Glutathione transport: a new role for PfCRT in chloroquine resistance.
نویسندگان
چکیده
AIMS Chloroquine (CQ) kills Plasmodium falciparum by binding heme, preventing its detoxification to hemozoin in the digestive vacuole (DV) of the parasite. CQ resistance (CQR) is associated with mutations in the DV membrane protein P. falciparum chloroquine resistance transporter (PfCRT), mediating the leakage of CQ from the DV. However, additional factors are thought to contribute to the resistance phenotype. This study tested the hypothesis that there is a link between glutathione (GSH) and CQR. RESULTS Using isogenic parasite lines carrying wild-type or mutant pfcrt, we reveal lower levels of GSH in the mutant lines and enhanced sensitivity to the GSH synthesis inhibitor l-buthionine sulfoximine, without any alteration in cytosolic de novo GSH synthesis. Incubation with N-acetylcysteine resulted in increased GSH levels in all parasites, but only reduced susceptibility to CQ in PfCRT mutant-expressing lines. In support of a heme destruction mechanism involving GSH in CQR parasites, we also found lower hemozoin levels and reduced CQ binding in the CQR PfCRT-mutant lines. We further demonstrate via expression in Xenopus laevis oocytes that the mutant alleles of Pfcrt in CQR parasites selectively transport GSH. INNOVATION We propose a mechanism whereby mutant pfcrt allows enhanced transport of GSH into the parasite's DV. The elevated levels of GSH in the DV reduce the level of free heme available for CQ binding, which mediates the lower susceptibility to CQ in the PfCRT mutant parasites. CONCLUSION PfCRT has a dual role in CQR, facilitating both efflux of harmful CQ from the DV and influx of beneficial GSH into the DV.
منابع مشابه
Evidence for activation of endogenous transporters in Xenopus laevis oocytes expressing the Plasmodium falciparum chloroquine resistance transporter, PfCRT.
A large body of genetic, reverse genetic, and epidemiological data has linked chloroquine-resistant malaria to polymorphisms within a gene termed pfcrt in the human malarial parasite Plasmodium falciparum. To investigate the biological function of the chloroquine resistance transporter, PfCRT, as well as its role in chloroquine resistance, we functionally expressed this protein in Xenopus laevi...
متن کاملEvidence for a central role for PfCRT in conferring Plasmodium falciparum resistance to diverse antimalarial agents.
Chloroquine resistance in Plasmodium falciparum is primarily conferred by mutations in pfcrt. Parasites resistant to chloroquine can display hypersensitivity to other antimalarials; however, the patterns of crossresistance are complex, and the genetic basis has remained elusive. We show that stepwise selection for resistance to amantadine or halofantrine produced previously unknown pfcrt mutati...
متن کاملMutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite’s food vacuole and alter drug sensitivities
Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased se...
متن کاملDiverse mutational pathways converge on saturable chloroquine transport via the malaria parasite's chloroquine resistance transporter.
Mutations in the chloroquine resistance transporter (PfCRT) are the primary determinant of chloroquine (CQ) resistance in the malaria parasite Plasmodium falciparum. A number of distinct PfCRT haplotypes, containing between 4 and 10 mutations, have given rise to CQ resistance in different parts of the world. Here we present a detailed molecular analysis of the number of mutations (and the order...
متن کاملNew haplotypes of the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene among chloroquine-resistant parasite isolates.
Mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene were examined to assess their associations with chloroquine resistance in clinical samples from Armopa (Papua) and Papua New Guinea. In Papua, two of the five pfcrt haplotypes found were new: SVIET from Armopa and CVIKT from an isolate in Timika. There was also a strong association (P < 0.0001) between the pf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Antioxidants & redox signaling
دوره 19 7 شماره
صفحات -
تاریخ انتشار 2013